Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae.

Identifieur interne : 000471 ( Main/Exploration ); précédent : 000470; suivant : 000472

Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae.

Auteurs : Estéfani García-Ríos [Espagne] ; Lucía Ramos-Alonso [Espagne] ; José M. Guillam N [Espagne]

Source :

RBID : pubmed:27536287

Abstract

Many factors, such as must composition, juice clarification, fermentation temperature, or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10-15°C) is becoming more prevalent in order to produce white and "rosé" wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins, and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1, and URM1, whose deletion strongly impaired low-temperature growth.

DOI: 10.3389/fmicb.2016.01199
PubMed: 27536287
PubMed Central: PMC4971067


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Garcia Rios, Estefani" sort="Garcia Rios, Estefani" uniqKey="Garcia Rios E" first="Estéfani" last="García-Ríos">Estéfani García-Ríos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia</wicri:regionArea>
<wicri:noRegion>Consejo Superior de Investigaciones Científicas Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramos Alonso, Lucia" sort="Ramos Alonso, Lucia" uniqKey="Ramos Alonso L" first="Lucía" last="Ramos-Alonso">Lucía Ramos-Alonso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia</wicri:regionArea>
<wicri:noRegion>Consejo Superior de Investigaciones Científicas Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guillam N, Jose M" sort="Guillam N, Jose M" uniqKey="Guillam N J" first="José M" last="Guillam N">José M. Guillam N</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia</wicri:regionArea>
<wicri:noRegion>Consejo Superior de Investigaciones Científicas Valencia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27536287</idno>
<idno type="pmid">27536287</idno>
<idno type="doi">10.3389/fmicb.2016.01199</idno>
<idno type="pmc">PMC4971067</idno>
<idno type="wicri:Area/Main/Corpus">000414</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000414</idno>
<idno type="wicri:Area/Main/Curation">000414</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000414</idno>
<idno type="wicri:Area/Main/Exploration">000414</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Garcia Rios, Estefani" sort="Garcia Rios, Estefani" uniqKey="Garcia Rios E" first="Estéfani" last="García-Ríos">Estéfani García-Ríos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia</wicri:regionArea>
<wicri:noRegion>Consejo Superior de Investigaciones Científicas Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramos Alonso, Lucia" sort="Ramos Alonso, Lucia" uniqKey="Ramos Alonso L" first="Lucía" last="Ramos-Alonso">Lucía Ramos-Alonso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia</wicri:regionArea>
<wicri:noRegion>Consejo Superior de Investigaciones Científicas Valencia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guillam N, Jose M" sort="Guillam N, Jose M" uniqKey="Guillam N J" first="José M" last="Guillam N">José M. Guillam N</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia</wicri:regionArea>
<wicri:noRegion>Consejo Superior de Investigaciones Científicas Valencia</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many factors, such as must composition, juice clarification, fermentation temperature, or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10-15°C) is becoming more prevalent in order to produce white and "rosé" wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins, and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1, and URM1, whose deletion strongly impaired low-temperature growth. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27536287</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>1199</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2016.01199</ELocationID>
<Abstract>
<AbstractText>Many factors, such as must composition, juice clarification, fermentation temperature, or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10-15°C) is becoming more prevalent in order to produce white and "rosé" wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins, and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1, and URM1, whose deletion strongly impaired low-temperature growth. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>García-Ríos</LastName>
<ForeName>Estéfani</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ramos-Alonso</LastName>
<ForeName>Lucía</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guillamón</LastName>
<ForeName>José M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MUP1</Keyword>
<Keyword MajorTopicYN="N">ROS accumulation</Keyword>
<Keyword MajorTopicYN="N">URM1</Keyword>
<Keyword MajorTopicYN="N">correlation analysis</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">thioredoxins</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27536287</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2016.01199</ArticleId>
<ArticleId IdType="pmc">PMC4971067</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Yeast. 1997 Aug;13(10):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):930-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2003 Apr 25;221(2):249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12725935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):1915-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1996 Sep;21(6):1207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8898389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2003 Jan 15;80(1):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12430770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2007 Apr;31(3):327-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17298585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Apr;190(4):1157-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2002 Aug;25(2):287-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12353885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Nov;22(21):4192-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jun;56(6):1875-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1993 Mar;139(3):501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8473859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 20;8(9):e74939</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24073228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 Apr 1;24(10 ):543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26596469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Dec 9;42(48):14139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14640681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2015 Jul 09;14:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26156706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2001 Mar;65(3):728-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11330701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1217-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jul 1;24(13):2519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8692690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Dec;15(12):5492-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15483057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Dec 03;15:1059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25471357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2006 Apr;10(2):117-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Jul 25;307(2):308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12859956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Dec;14(16):1511-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9885153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jul 22;16:537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26194190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 13;8(8):e71909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23967264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 9;460(7252):220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19536156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Nov;23(21):5241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Dec;77(3):675-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179418</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="Garcia Rios, Estefani" sort="Garcia Rios, Estefani" uniqKey="Garcia Rios E" first="Estéfani" last="García-Ríos">Estéfani García-Ríos</name>
</noRegion>
<name sortKey="Guillam N, Jose M" sort="Guillam N, Jose M" uniqKey="Guillam N J" first="José M" last="Guillam N">José M. Guillam N</name>
<name sortKey="Ramos Alonso, Lucia" sort="Ramos Alonso, Lucia" uniqKey="Ramos Alonso L" first="Lucía" last="Ramos-Alonso">Lucía Ramos-Alonso</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000471 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000471 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27536287
   |texte=   Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27536287" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020